By Topic

Survivable smart grid communication: Smart-meters meshes to the rescue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arjun P. Athreya ; Wireless Network and System Security Group, Electrical and Computer Engineering, Carnegie Mellon University, USA ; Patrick Tague

Smart grids are critical cyber-physical infrastructures in the world now. Since these infrastructures are prone to large scale outages due to disasters or faults, a resilient and survivable communication architecture is desired. In this work, we propose a resilient and survivable hierarchical communication architecture for the smart grid that mirrors the hierarchy of the existing power grid. Post-disaster resilience in grid communication is achieved through the grid flattening process. This process involves smart-meters and other disaster surviving elements of higher system levels of the grid forming a wireless mesh network. The flattened network of grid elements with one-hop communication links help in reliable and timely relaying of grid's health information to working regions of the grid. This allows for swift action by control engineers of the utility provider and emergency services with real-time data. We propose analytical models to study the performance of the flattened architecture as a function of outage area, smart-meter density and smart-meter's neighborhood size. The results from the analytical model will be compared with simulation results from OPNET.

Published in:

Computing, Networking and Communications (ICNC), 2012 International Conference on

Date of Conference:

Jan. 30 2012-Feb. 2 2012