By Topic

Robust Real-Time-Constrained Estimation of Respiratory Motion for Interventional MRI on Mobile Organs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S├ębastien Roujol ; Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, CNRS, University of Bordeaux 2, 33076 Bordeaux, France ; Jenny Benois-Pineau ; Baudouin Denis de Senneville ; Mario Ries
more authors

Real-time magnetic resonance imaging is a promising tool for image-guided interventions. For applications such as thermotherapy on moving organs, a precise image-based compensation of motion is required in real time to allow quantitative analysis, retrocontrol of the interventional device, or determination of the therapy endpoint. Reduced field-of-view imaging represents a promising way to improve spatial and / or temporal resolution. However, it introduces new challenges for target motion estimation, since structures near the target may appear transiently due to the respiratory motion and the limited spatial coverage. In this paper, a new image-based motion estimation method is proposed combining a global motion estimation with a novel optical flow approach extending the initial Horn and Schunck (H&S) method by an additional regularization term. This term integrates the displacement of physiological landmarks into the variational formulation of the optical flow problem. This allowed for a better control of the optical flow in presence of transient structures. The method was compared to the same registration pipeline employing the H&S approach on a synthetic dataset and in vivo image sequences. Compared to the H&S approach, a significant improvement (p <; & 0.05) of the Dice's similarity criterion computed between the reference and the registered organ positions was achieved.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:16 ,  Issue: 3 )