By Topic

3-D Head Tracking via Invariant Keypoint Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haibo Wang ; Shandong Univ., Jinan, China ; Davoine, F. ; Lepetit, V. ; Chaillou, C.
more authors

Keypoint matching is a standard tool to solve the correspondence problem in vision applications. However, in 3-D face tracking, this approach is often deficient because the human face complexities, together with its rich viewpoint, nonrigid expression, and lighting variations in typical applications, can cause many variations impossible to handle by existing keypoint detectors and descriptors. In this paper, we propose a new approach to tailor keypoint matching to track the 3-D pose of the user head in a video stream. The core idea is to learn keypoints that are explicitly invariant to these challenging transformations. First, we select keypoints that are stable under randomly drawn small viewpoints, nonrigid deformations, and illumination changes. Then, we treat keypoint descriptor learning at different large angles as an incremental scheme to learn discriminative descriptors. At matching time, to reduce the ratio of outlier correspondences, we use second-order color information to prune keypoints unlikely to lie on the face. Moreover, we integrate optical flow correspondences in an adaptive way to remove motion jitter efficiently. Extensive experiments show that the proposed approach can lead to fast, robust, and accurate 3-D head tracking results even under very challenging scenarios.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:22 ,  Issue: 8 )