Cart (Loading....) | Create Account
Close category search window
 

Ant Colony Optimization for Software Project Scheduling and Staffing with an Event-Based Scheduler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei-Neng Chen ; Dept. of Comput. Sci., Sun Yat-Sen Univ., Guangzhou, China ; Jun Zhang

Research into developing effective computer aided techniques for planning software projects is important and challenging for software engineering. Different from projects in other fields, software projects are people-intensive activities and their related resources are mainly human resources. Thus, an adequate model for software project planning has to deal with not only the problem of project task scheduling but also the problem of human resource allocation. But as both of these two problems are difficult, existing models either suffer from a very large search space or have to restrict the flexibility of human resource allocation to simplify the model. To develop a flexible and effective model for software project planning, this paper develops a novel approach with an event-based scheduler (EBS) and an ant colony optimization (ACO) algorithm. The proposed approach represents a plan by a task list and a planned employee allocation matrix. In this way, both the issues of task scheduling and employee allocation can be taken into account. In the EBS, the beginning time of the project, the time when resources are released from finished tasks, and the time when employees join or leave the project are regarded as events. The basic idea of the EBS is to adjust the allocation of employees at events and keep the allocation unchanged at nonevents. With this strategy, the proposed method enables the modeling of resource conflict and task preemption and preserves the flexibility in human resource allocation. To solve the planning problem, an ACO algorithm is further designed. Experimental results on 83 instances demonstrate that the proposed method is very promising.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.