By Topic

An improved ECG-derived respiration method using kernel principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Devy Widjaja ; Department of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven, Leuven, Belgium ; Jenny Carolina Varon Perez ; Alexander Caicedo Dorado ; Sabine Van Huffel

Recent studies show that principal component analysis (PCA) of heart beats generates well-performing ECG-derived respiratory signals (EDR). This study aims at improving the performance of EDR signals using kernel PCA (kPCA). Kernel PCA is a generalization of PCA where nonlinearities in the data are taken into account for the decomposition. The performance of PCA and kPCA is evaluated by comparing the EDR signals to the reference respiratory signal. Correlation coefficients of 0.630 ± 0.189 and 0.675 ± 0.163, and magnitude squared coherence coefficients at respiratory frequency of 0.819 ± 0.229 and 0.894 ± 0.139 were obtained for PCA and kPCA respectively. The Wilcoxon signed rank test showed statistically significantly higher coefficients for kPCA than for PCA for both the correlation (p = 0.0257) and coherence (p = 0.0030) coefficients. To conclude, kPCA proves to outperform PCA in the extraction of a respiratory signal from single lead ECGs.

Published in:

2011 Computing in Cardiology

Date of Conference:

18-21 Sept. 2011