By Topic

Large speed increase using novel GPU based algorithms to simulate cardiac excitation waves in 3D rabbit ventricles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Higham, J. ; Univ. of Manchester, Manchester, UK ; Aslanidi, O. ; Henggui Zhang

Large-scale biophysically detailed computer models of the heart provide a useful tool to understand dynamics of cardiac excitation and mechanisms underlying lethal cardiac arrhythmias. However, high demanding of intensive high performance computing environments limits the practical application of such models. This paper presents a novel use of a desktop personal computer and the CUDA parallel computing architecture for a highly efficient method of parallel simulation of a 3D ventricular model. We show that substantial speed increases can be obtained using a desktop Graphical Processing Unit (GPU) compared to a single desktop Central Processing Unit (CPU), and that a single GPU can be an effective substitute to large numbers of CPUs.

Published in:

Computing in Cardiology, 2011

Date of Conference:

18-21 Sept. 2011