By Topic

Particle Swarm Optimization-Based Hyperspectral Dimensionality Reduction for Urban Land Cover Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
He Yang ; Topaz Labs LLC, Texas, USA ; Qian Du ; Genshe Chen

A particle swarm optimization (PSO)-based dimensionality reduction approach is proposed to use a simple searching criterion function, called minimum estimated abundance covariance (MEAC), requiring class signatures only. It has low computational cost, and the selected bands are independent of the detector or classifiers used in the following data analysis step. With such an efficient criterion, PSO can find a global optimal solution much more efficiently, compared with other frequently used searching strategies. Its performance is evaluated by support vector machine (SVM)-based classification for urban land cover mapping. In our experiments, SVM classification accuracy using PSO-selected bands is greatly higher than using all of the original bands or dimensionality-reduced data from principal component analysis (PCA) or linear discriminant analysis (LDA). In addition, the improvement on SVM accuracy can bring out even more significant improvement in classifier fusion.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:5 ,  Issue: 2 )