Cart (Loading....) | Create Account
Close category search window

A Novel Multiple Kernel Learning Framework for Heterogeneous Feature Fusion and Variable Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi-Ren Yeh ; Res. Center for Inf. Technol. Innovation, Taipei, Taiwan ; Ting-Chu Lin ; Yung-Yu Chung ; Wang, Y.-C.F.

We propose a novel multiple kernel learning (MKL) algorithm with a group lasso regularizer, called group lasso regularized MKL (GL-MKL), for heterogeneous feature fusion and variable selection. For problems of feature fusion, assigning a group of base kernels for each feature type in an MKL framework provides a robust way in fitting data extracted from different feature domains. Adding a mixed norm constraint (i.e., group lasso) as the regularizer, we can enforce the sparsity at the group/feature level and automatically learn a compact feature set for recognition purposes. More precisely, our GL-MKL determines the optimal base kernels, including the associated weights and kernel parameters, and results in improved recognition performance. Besides, our GL-MKL can also be extended to address heterogeneous variable selection problems. For such problems, we aim to select a compact set of variables (i.e., feature attributes) for comparable or improved performance. Our proposed method does not need to exhaustively search for the entire variable space like prior sequential-based variable selection methods did, and we do not require any prior knowledge on the optimal size of the variable subset either. To verify the effectiveness and robustness of our GL-MKL, we conduct experiments on video and image datasets for heterogeneous feature fusion, and perform variable selection on various UCI datasets.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.