By Topic

Automated vision system for skeletal age assessment using knowledge based techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents a knowledge-based automated vision system to segment bones in a child's hand radiograph image, and to determine growth progress using decision theoretic approaches. A hierarchical knowledge-based localisation scheme is used to localise bones in the hand radiograph image. Bone contour detection is then implemented with further knowledge represented by active shape models (ASM). Hence a set of parameters is generated to describe the bone contour shape. The bone image is parameterised to describe its texture which is correlated to growth age. Regression and Bayesian methods are then used to model the characteristics of the most correlated shape parameters to the growth age as well as texture parameters in a training set. The models are finally applied to test images to estimate their bone ages. The Bayesian methods result in an 8.93% average relative error

Published in:

Image Processing and Its Applications, 1997., Sixth International Conference on  (Volume:2 )

Date of Conference:

14-17 Jul 1997