By Topic

Autonomous Gas-Sensitive Microdrone: Wind Vector Estimation and Gas Distribution Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Patrick P. Neumann ; BAM Federal Inst for Materials Research and Test, Berlin, D -12205, GERMANY ; Sahar Asadi ; Achim J. Lilienthal ; Matthias Bartholmai
more authors

This article presents the development and validation of an autonomous, gas sensitive microdrone that is capable of estimating the wind vector in real time using only the onboard control unit of the microdrone and performing gas distribution mapping (DM). Two different sampling approaches are suggested to address this problem. On the one hand, a predefined trajectory is used to explore the target area with the microdrone in a real-world gas DM experiment. As an alternative sampling approach, we introduce an adaptive strategy that suggests next sampling points based on an artificial potential field (APF). Initial results in real-world experiments demonstrate the capability of the proposed adaptive sampling strategy for gas DM and its use for gas source localization.

Published in:

IEEE Robotics & Automation Magazine  (Volume:19 ,  Issue: 1 )