By Topic

Real-Time Sleep Apnea Detection by Classifier Combination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xie, B. ; Dept. of Electr. Eng., Univ. of Texas at Dallas, Richardson, TX, USA ; Minn, H.

To find an efficient and valid alternative of polysomnography (PSG), this paper investigates real-time sleep apnea and hypopnea syndrome (SAHS) detection based on electrocardiograph (ECG) and saturation of peripheral oxygen (SpO2) signals, individually and in combination. We include ten machine-learning algorithms in our classification experiment. It is shown that our proposed SpO2 features outperform the ECG features in terms of diagnostic ability. More importantly, we propose classifier combination to further enhance the classification performance by harnessing the complementary information provided by individual classifiers. With our selected SpO2 and ECG features, the classifier combination using AdaBoost with Decision Stump, Bagging with REPTree, and either kNN or Decision Table achieves sensitivity, specificity, and accuracy all around 82% for a minute-based real-time SAHS detection over 25 sleep-disordered-breathing suspects' full overnight recordings.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 3 )