Cart (Loading....) | Create Account
Close category search window
 

Enabling CUDA acceleration within virtual machines using rCUDA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Duato, J. ; D. Inf. de Sist. y Comput., Univ. Politec. de Valencia, Valencia, Spain ; Pena, A.J. ; Silla, F. ; Fernandez, J.C.
more authors

The hardware and software advances of Graphics Processing Units (GPUs) have favored the development of GPGPU (General-Purpose Computation on GPUs) and its adoption in many scientific, engineering, and industrial areas. Thus, GPUs are increasingly being introduced in high-performance computing systems as well as in datacenters. On the other hand, virtualization technologies are also receiving rising interest in these domains, because of their many benefits on acquisition and maintenance savings. There are currently several works on GPU virtualization. However, there is no standard solution allowing access to GPGPU capabilities from virtual machine environments like, e.g., VMware, Xen, VirtualBox, or KVM. Such lack of a standard solution is delaying the integration of GPGPU into these domains. In this paper, we propose a first step towards a general and open source approach for using GPGPU features within VMs. In particular, we describe the use of rCUDA, a GPGPU (General-Purpose Computation on GPUs) virtualization framework, to permit the execution of GPU-accelerated applications within virtual machines (VMs), thus enabling GPGPU capabilities on any virtualized environment. Our experiments with rCUDA in the context of KVM and VirtualBox on a system equipped with two NVIDIA GeForce 9800 GX2 cards illustrate the overhead introduced by the rCUDA middleware and prove the feasibility and scalability of this general virtualizing solution. Experimental results show that the overhead is proportional to the dataset size, while the scalability is similar to that of the native environment.

Published in:

High Performance Computing (HiPC), 2011 18th International Conference on

Date of Conference:

18-21 Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.