Cart (Loading....) | Create Account
Close category search window
 

An Information Theoretical Analysis of Kinase Activated Phosphorylation Dephosphorylation Cycle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong Qian ; Dept. of Appl. Math., Univ. of Washington, Seattle, WA, USA ; Roy, S.

Signal transduction, the information processing mechanism in biological cells, is carried out by a network of biochemical reactions. The dynamics of driven biochemical reactions can be studied in terms of nonequilibrium statistical physics. Such systems may also be studied in terms of Shannon's information theory. We combine these two perspectives in this study of the basic units (modules) of cellular signaling: the phosphorylation dephosphorylation cycle (PdPC) and the guanosine triphosphatase (GTPase). We show that the channel capacity is zero if and only if the free energy expenditure of biochemical system is zero. In fact, a positive correlation between the channel capacity and free energy expenditure is observed. In terms of the information theory, a linear signaling cascade consisting of multiple steps of PdPC can function as a distributed “multistage code.” With increasing number of steps in the cascade, the system trades channel capacity with the code complexity. Our analysis shows that while a static code can be molecular structure based, a biochemical communication channel has to have energy expenditure.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:11 ,  Issue: 3 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.