By Topic

Evolution of Plastic Learning in Spiking Networks via Memristive Connections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gerard Howard ; Department of Computer Science and Creative Technologies, University of the West of England, Bristol, U.K. ; Ella Gale ; Larry Bull ; Ben de Lacy Costello
more authors

This paper presents a spiking neuroevolutionary system which implements memristors as plastic connections, i.e., whose weights can vary during a trial. The evolutionary design process exploits parameter self-adaptation and variable topologies, allowing the number of neurons, connection weights, and interneural connectivity pattern to emerge. By comparing two phenomenological real-world memristor implementations with networks comprised of: 1) linear resistors, and 2) constant-valued connections, we demonstrate that this approach allows the evolution of networks of appropriate complexity to emerge whilst exploiting the memristive properties of the connections to reduce learning time. We extend this approach to allow for heterogeneous mixtures of memristors within the networks; our approach provides an in-depth analysis of network structure. Our networks are evaluated on simulated robotic navigation tasks; results demonstrate that memristive plasticity enables higher performance than constant-weighted connections in both static and dynamic reward scenarios, and that mixtures of memristive elements provide performance advantages when compared to homogeneous memristive networks.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:16 ,  Issue: 5 )