Cart (Loading....) | Create Account
Close category search window
 

Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arias-Montano, A. ; Dept. of Comput. Sci., Inst. Politec. Nac., Mexico City, Mexico ; Coello Coello, Carlos A. ; Mezura Montes, E.

Nowadays, the solution of multiobjective optimization problems in aeronautical and aerospace engineering has become a standard practice. These two fields offer highly complex search spaces with different sources of difficulty, which are amenable to the use of alternative search techniques such as metaheuristics, since they require little domain information to operate. From the several metaheuristics available, multiobjective evolutionary algorithms (MOEAs) have become particularly popular, mainly because of their availability, ease of use, and flexibility. This paper presents a taxonomy and a comprehensive review of applications of MOEAs in aeronautical and aerospace design problems. The review includes both the characteristics of the specific MOEA adopted in each case, as well as the features of the problems being solved with them. The advantages and disadvantages of each type of approach are also briefly addressed. We also provide a set of general guidelines for using and designing MOEAs for aeronautical and aerospace engineering problems. In the final part of the paper, we provide some potential paths for future research, which we consider promising within this area.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:16 ,  Issue: 5 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.