Cart (Loading....) | Create Account
Close category search window
 

Modeling and Control of a Snake-Like Robot Using the Screw-Drive Mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fukushima, H. ; Dept. of Mech. Eng. & Sci., Kyoto Univ., Kyoto, Japan ; Satomura, S. ; Kawai, T. ; Tanaka, M.
more authors

In this paper, we develop a new type of snake-like robot using screw-drive units that are connected by active joints. The screw-drive units enable the robot to generate propulsion on any side of the body in contact with environments. Another feature of this robot is the omnidirectional mobility by combinations of screws' angular velocities. We also derive a kinematic model and apply it to trajectory tracking control. Furthermore, we design a front-unit-following controller, which is suitable for manual operations. In this control system, operators are required to command only one unit in the front; then, commands for the rest of the units are automatically calculated to track the path of the preceding units. Asymptotic convergence of the tracking error of the front-unit-following controller is analyzed based on a Lyapunov approach for the case of constant curvature. The effectiveness of the control method is demonstrated by numerical examples and experiments.

Published in:

Robotics, IEEE Transactions on  (Volume:28 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.