By Topic

A Statistical Analysis on Operation Scheduling for an Energy Network Project

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sugaya, Y. ; Dept. of Electr. & Commun. Eng., Tohoku Univ., Sendai, Japan ; Omachi, S. ; Takeuchi, A. ; Nozaki, Y.

Distributed power generation, using renewable energy, has been attracting attention to cope with global environment issues; a microgrid is a promising configuration for distributed power generation. To augment the stability and efficiency of the microgrid, an intelligent control, which considers the restrictions and characteristics of each unit, is indispensable. It can be achieved by constructing an efficient operation schedule for each power plant in the microgrid, depending on energy demand, and predicting passive power generation. The operation scheduling is regarded as a constrained optimization problem, which must have nonlinear characteristics in case of actual systems. Although several methods using metaheuristic optimization have been proposed, it would be trapped into a local minimum in some cases. In this paper, we statistically analyze operation schedules, computed for an actual power network of the demonstrative project. In addition, we conduct an investigation of the relationship between the input parameter space and the solution space, which can be exploited to obtain more appropriate initial solutions leading to better and faster converging solutions.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 9 )