By Topic

Co-firing of LTCC modules with embedded ferrite layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Naghib-zadeh, H. ; Fed. Inst. for Mater. Res. & Testing, Berlin, Germany ; Rabe, T. ; Toepfer, J. ; Karmazin, R.

Further miniaturization of electronic packaging calls for integration of magnetic functional components into LTCC modules. For integration of magnetic function into LTCC, low fired MnZn- and NiCuZn-ferrites which can be fully densified at the standard LTCC sintering temperature of 900°C were developed. To co-fire these ferrite tapes with dielectric tapes the sintering shrinkage and the coefficient of thermal expansion of ferrite and dielectric tapes must be matched. For each ferrite material a new LTCC dielectric material was designed. The embedded ferrite tapes into new LTCC dielectric tapes can be sufficiently densified during co-firing at 900°C without any cracking. Compared to separately sintered ferrites the permeability of embedded ferrite tapes is reduced. For embedded NiCuZn ferrites permeabilities between 230 and 570 (at 2 MHz) according to the thickness of the embedded ferrite layer were measured. For embedded MnZn ferrites a permeability of 300 was measured.

Published in:

Microelectronics and Packaging Conference (EMPC), 2011 18th European

Date of Conference:

12-15 Sept. 2011