Cart (Loading....) | Create Account
Close category search window
 

Content-Based Microscopic Image Retrieval System for Multi-Image Queries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, we describe the design and development of a multitiered content-based image retrieval (CBIR) system for microscopic images utilizing a reference database that contains images of more than one disease. The proposed CBIR system uses a multitiered approach to classify and retrieve microscopic images involving their specific subtypes, which are mostly difficult to discriminate and classify. This system enables both multi-image query and slide-level image retrieval in order to protect the semantic consistency among the retrieved images. New weighting terms, inspired from information retrieval theory, are defined for multiple-image query and retrieval. The performance of the system was tested on a dataset including 1666 imaged high power fields extracted from 57 follicular lymphoma (FL) tissue slides with three subtypes and 44 neuroblastoma (NB) tissue slides with four subtypes. Each slide is semantically annotated according to their subtypes by expert pathologists. By using leave-one-slide out testing scheme, the multi-image query algorithm with the proposed weighting strategy achieves about 93% and 86% of average classification accuracy at the first rank retrieval, outperforming the image-level retrieval accuracy by about 38 and 26 percentage points, for FL and NB diseases, respectively.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 4 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.