By Topic

A New Multiplicative Denoising Variational Model Based on m th Root Transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sangwoon Yun ; Department of Mathematics Education, Sung Kyun Kwan University, Seoul, Korea ; Hyenkyun Woo

In coherent imaging systems, such as the synthetic aperture radar (SAR), the observed images are contaminated by multiplicative noise. Due to the edge-preserving feature of the total variation (TV), variational models with TV regularization have attracted much interest in removing multiplicative noise. However, the fidelity term of the variational model, based on maximum a posteriori estimation, is not convex, and so, it is usually difficult to find a global solution. Hence, the logarithmic function is used to transform the nonconvex variational model to the convex one. In this paper, instead of using the log, we exploit the th root function to relax the nonconvexity of the variational model. An algorithm based on the augmented Lagrangian function, which has been applied to solve the log transformed convex variational model, can be applied to solve our proposed model. However, this algorithm requires solving a subproblem, which does not have a closed-form solution, at each iteration. Hence, we propose to adapt the linearized proximal alternating minimization algorithm, which does not require inner iterations for solving the subproblems. In addition, the proposed method is very simple and highly parallelizable; thus, it is efficient to remove multiplicative noise in huge SAR images. The proposed model for multiplicative noise removal shows overall better performance than the convex model based on the log transformation.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 5 )