By Topic

Energy-aware hierarchical scheduling of applications in large scale data centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gaojin Wen ; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China ; Jue Hong ; Chengzhong Xu ; Pavan Balaji
more authors

With the rapid advance of cloud computing, large scale data center plays a key role in cloud computing. Energy consumption of such distributed systems has become a prominent problem and received much attention. Among existing energy-saving methods, application scheduling can reduce energy consumption by replacing and consolidating applications to decrease the number of running servers. However, most application scheduling approaches did not consider the energy cost on network devices, which is also a big portion of power consumption in large data centers. In this paper we propose a Hierarchical Scheduling Algorithm for applications, namely HSA, to minimize the energy consumption of both servers and network devices. In HSA, a Dynamic Maximum Node Sorting (DMNS) method is developed to optimize the application placement on servers connected to a common switch. Hierarchical crossing-switch adjustment is applied to further reduce the number of running servers. As a result, both the number of running servers and the amount of data transfer can be greatly reduced. The time complexity of HSA is Θ(n + log(logn)), where n is the total number of the severs in the data center. Its stability is verified via simulations. Experiments show that the performance of HSA outperforms existing algorithms.

Published in:

Cloud and Service Computing (CSC), 2011 International Conference on

Date of Conference:

12-14 Dec. 2011