By Topic

Efficiently Mining Unordered Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chehreghani, M.H. ; Dept. of Comput. Sci., Katholieke Univ. Leuven, Leuven, Belgium

Frequent tree patterns have many applications in different domains such as XML document mining, user web log analysis, network routing and bioinformatics. In this paper, we first introduce three new tree encodings and accordingly present an efficient algorithm for finding frequent patterns from rooted unordered trees with the assumption that children of every node in database trees are identically labeled. Then, we generalize the method and propose the UITree algorithm to find frequent patterns from rooted unordered trees without any restriction. Compared to other algorithms in the literature, UItree manages occurrences of a candidate tree in database trees more efficiently. Our extensive experiments on both real and synthetic datasets show that UITree significantly outperforms the most efficient existing works on mining unordered trees.

Published in:

Data Mining (ICDM), 2011 IEEE 11th International Conference on

Date of Conference:

11-14 Dec. 2011