Cart (Loading....) | Create Account
Close category search window

Empath: A framework for evaluating entity-level sentiment analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ward, C.B. ; Comput. Sci. Dept., Stony Brook Univ., Stony Brook, NY, USA ; Yejin Choi ; Skiena, S. ; Xavier, E.C.

Sentiment analysis is the fundamental component in text-driven monitoring or forecasting systems, where the general sentiment towards real-world entities (e.g., people, products, organizations) are analyzed based on the sentiment signals embedded in a myriad of web text available today. Building such systems involves several practically important problems, from data cleansing (e.g., boilerplate removal, web-spam detection), and sentiment analysis at individual mention-level (e.g., phrase, sentence-, document-level) to the aggregation of sentiment for each entity-level (e.g., person, company) analysis. Most previous research in sentiment analysis however, has focused only on individual mention-level analysis, and there has been relatively less work that copes with other practically important problems for enabling a large-scale sentiment monitoring system. In this paper, we propose Empath, a new framework for evaluating entity-level sentiment analysis. Empath leverages objective measurements of entities in various domains such as people, companies, countries, movies, and sports, to facilitate entity-level sentiment analysis and tracking. We demonstrate the utility of Empath for the evaluation of a large-scale sentiment system by applying it to various lexicons using Lydia, our own large scale text-analytics tool, over a corpus consisting of more than a terabyte of newspaper data. We expect that Empath will encourage research that encompasses end-to-end pipelines to enable a large-scale text-driven monitoring and forecasting systems.

Published in:

Emerging Technologies for a Smarter World (CEWIT), 2011 8th International Conference & Expo on

Date of Conference:

2-3 Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.