By Topic

Interest Driven Navigation in Visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Healey, Christopher G. ; North Carolina State University, Raleigh ; Dennis, Brent M.

This paper describes a new method to explore and discover within a large data set. We apply techniques from preference elicitation to automatically identify data elements that are of potential interest to the viewer. These "elements of interest (EOI)” are bundled into spatially local clusters, and connected together to form a graph. The graph is used to build camera paths that allow viewers to "tour” areas of interest (AOI) within their data. It is also visualized to provide wayfinding cues. Our preference model uses Bayesian classification to tag elements in a data set as interesting or not interesting to the viewer. The model responds in real time, updating the elements of interest based on a viewer's actions. This allows us to track a viewer's interests as they change during exploration and analysis. Viewers can also interact directly with interest rules the preference model defines. We demonstrate our theoretical results by visualizing historical climatology data collected at locations throughout the world.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 10 )