By Topic

Parallel Outlier Detection Using KD-Tree Based on MapReduce

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qing He ; Key Lab. of Intell. Inf. Process., Inst. of Comput. Technol., Beijing, China ; Yunlong Ma ; Qun Wang ; Fuzhen Zhuang
more authors

Distributed and Parallel algorithms have attracted a vast amount of interest and research in recent decades, to handle large-scale data set in real-world applications. In this paper, we focus on a parallel implementation of KD-Tree based outlier detection method to deal with large-scale data set. As one of the state-of-the-art outlier detection methods, KD-Tree based has been approved to be an effective algorithm. However, it still cannot process large-scale data set efficiently due to its serial implementation. Based on the current and powerful parallel programming framework -- MapReduce, we propose to implement the parallel KD-Tree based outlier detection algorithm (e.g., PKDTree for short). Experimental results demonstrate the efficiency of PKDTree according to the evaluation criterions of scale up, speedup and size up.

Published in:

Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on

Date of Conference:

Nov. 29 2011-Dec. 1 2011