By Topic

TOPS Interferometry With TerraSAR-X

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Prats-Iraola, P. ; German Aerosp. Center (DLR), Microwaves & Radar Inst., Wessling, Germany ; Scheiber, R. ; Marotti, L. ; Wollstadt, S.
more authors

This paper presents results on SAR interferometry for data acquired in the Terrain Observation by Progressive Scans (TOPS) imaging mode. The rationale to retrieve accurate interferometric products in this mode is expounded, emphasizing the critical step of coregistration. Due to the particularities of the TOPS mode, a high Doppler centroid is present at burst edges, demanding a very high azimuth coregistration performance. A coregistration accuracy of around one tenth of a pixel, as it is usually recommended for stripmap interferometric data, could result in large undesired azimuth phase ramps in each TOPS burst. This paper presents two approaches based on the spectral diversity technique to precisely estimate this coregistration offset with the required accuracy and evaluates their performance. The effect of squint at burst edges in terms of an undesired impulse response shift during focusing and the impact on the interferometric coregistration performance is also addressed. Repeat-pass TOPS data acquired experimentally by TerraSAR-X are used to validate the proposed approaches.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 8 )