By Topic

A Unified Feature and Instance Selection Framework Using Optimum Experimental Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lijun Zhang ; Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China ; Chun Chen ; Jiajun Bu ; Xiaofei He

The goal of feature selection is to identify the most informative features for compact representation, whereas the goal of active learning is to select the most informative instances for prediction. Previous studies separately address these two problems, despite of the fact that selecting features and instances are dual operations over a data matrix. In this paper, we consider the novel problem of simultaneously selecting the most informative features and instances and develop a solution from the perspective of optimum experimental design. That is, by using the selected features as the new representation and the selected instances as training data, the variance of the parameter estimate of a learning function can be minimized. Specifically, we propose a novel approach, which is called Unified criterion for Feature and Instance selection (UFI), to simultaneously identify the most informative features and instances that minimize the trace of the parameter covariance matrix. A greedy algorithm is introduced to efficiently solve the optimization problem. Experimental results on two benchmark data sets demonstrate the effectiveness of our proposed method.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 5 )