By Topic

Combining Multiobjective Optimization With Differential Evolution to Solve Constrained Optimization Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong Wang ; School of Information Science and Engineering, Central South University, Changsha, China ; Zixing Cai

During the past decade, solving constrained optimization problems with evolutionary algorithms has received considerable attention among researchers and practitioners. Cai and Wang's method (abbreviated as CW method) is a recent constrained optimization evolutionary algorithm proposed by the authors. However, its main shortcoming is that a trial-and-error process has to be used to choose suitable parameters. To overcome the above shortcoming, this paper proposes an improved version of the CW method, called CMODE, which combines multiobjective optimization with differential evolution to deal with constrained optimization problems. Like its predecessor CW, the comparison of individuals in CMODE is also based on multiobjective optimization. In CMODE, however, differential evolution serves as the search engine. In addition, a novel infeasible solution replacement mechanism based on multiobjective optimization is proposed, with the purpose of guiding the population toward promising solutions and the feasible region simultaneously. The performance of CMODE is evaluated on 24 benchmark test functions. It is shown empirically that CMODE is capable of producing highly competitive results compared with some other state-of-the-art approaches in the community of constrained evolutionary optimization.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:16 ,  Issue: 1 )