Cart (Loading....) | Create Account
Close category search window
 

Soft artificial skin with multi-modal sensing capability using embedded liquid conductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong-Lae Park ; Wyss Inst. for Biologically Inspired Eng., Harvard Univ., Boston, MA, USA ; Bor-rong Chen ; Wood, R.J.

We describe the design, fabrication and calibration of a highly compliant mechanism to be used as an artificial skin sensor. The artificial skin sensor consists of multilayered mircochannels filled with a conductive liquid capable of detecting multi-axis strains and contact pressure. A novel manufacturing method composed of layered molding and casting processes was proposed to fabricate a multilayered soft sensor circuit. Silicone rubber layers with channel patterns, cast with 3D printed molds, were bonded to create embedded microchannels, and a conductive liquid was injected into the microchannels. The channel dimensions are 200μm × 200μm for strain sensing and 500μm (width) × 200μm (height) for pressure sensing. The size of the sensor is 25mm × 25mm, and the thickness is approximately 3.5mm. The prototype was tested with a materials tester and showed linearity in strain sensing and nonlinearity in pressure sensing. The sensor signal was repeatable in both cases.

Published in:

Sensors, 2011 IEEE

Date of Conference:

28-31 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.