By Topic

Human action recognition by learning bases of action attributes and parts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bangpeng Yao ; Comput. Sci. Dept., Stanford Univ., Stanford, CA, USA ; Xiaoye Jiang ; Khosla, A. ; Lin, A.L.
more authors

In this work, we propose to use attributes and parts for recognizing human actions in still images. We define action attributes as the verbs that describe the properties of human actions, while the parts of actions are objects and poselets that are closely related to the actions. We jointly model the attributes and parts by learning a set of sparse bases that are shown to carry much semantic meaning. Then, the attributes and parts of an action image can be reconstructed from sparse coefficients with respect to the learned bases. This dual sparsity provides theoretical guarantee of our bases learning and feature reconstruction approach. On the PASCAL action dataset and a new “Stanford 40 Actions” dataset, we show that our method extracts meaningful high-order interactions between attributes and parts in human actions while achieving state-of-the-art classification performance.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011