Cart (Loading....) | Create Account
Close category search window
 

Domain adaptation for object recognition: An unsupervised approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gopalan, R. ; Center for Autom. Res., Univ. of Maryland, College Park, MD, USA ; Ruonan Li ; Chellappa, R.

Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.