By Topic

Efficient Color-Ingredient Particle Filter for Video Object Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jian-Hui Chen ; Dept. & Inst. of Electron. Eng., Nat. Yunlin Univ. of Sci. & Technol., Douliou, Taiwan ; Wen-kai Tsai ; Ming-hwa Sheu ; Kai-Min Lin
more authors

This paper proposes a new object model and a similarity measure method for particle filter. Based on cluster color histogram concept and similarity measure method, we analyze color ingredient and measure similarity using Euclidean distance, such that our approach can decrease memory consumption and increase processing speed effectively. Furthermore, in order to increase processing speed, we select the candidate particles based on the previous object segmentation. This can reduce the particle amount and speed up tracking operation. Comparing with the existing approaches, the experiments demonstrate that our method has batter performance even when moving objects go across complex scene. The proposed method can run comfortably in real time with 58 frames per second, and 4428 bytes memory consumption in average.

Published in:

Innovations in Bio-inspired Computing and Applications (IBICA), 2011 Second International Conference on

Date of Conference:

16-18 Dec. 2011