By Topic

Unitary qubit lattice simulations of multiscale phenomena in quantum turbulence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
George Vahala ; Department of Physics, William & Mary, Williamsburg, VA 23185 ; Min Soe ; Bo Zhang ; Jeffrey Yepez
more authors

A unitary qubit lattice algorithm, which scales almost perfectly to the full number of cores available (e.g., 216000 cores on a CRAY XT5), is used to examine quantum turbulence and its interrelationship to classical turbulence with production runs on grids up to 57603. The maximal grids achievable by conventional CFD for quantum turbulence is just 20483, and artificial dissipation had to be introduced. Our unitary algorithms preserve the Hamiltonian structure of the Gross-Pitaevskii equation which describes quantum turbulence in a zero-temperature Bose-Einstein condensate (BEC). As a result, parameter regimes have been uncovered which exhibit very short Poincare recurrence time, as well as a strong triple cascade structure in the kinetic energy spectrum. Moreover, a detailed examination of the incompressible kinetic energy spectrum has revealed for the first time within a turbulence simulation the k-17/5 quantum Kelvin wave cascade. By generalizing the unitary entanglement operators on the 2 qubits, a finite temperature BEC system is examined. These unitary qubit lattice algorithms are directly applicable to quantum computers as they become available.

Published in:

2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)

Date of Conference:

12-18 Nov. 2011