By Topic

Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carlson, T.E. ; ELIS Dept., Ghent Univ., Ghent, Belgium ; Heirman, W. ; Eeckhout, L.

Two major trends in high-performance computing, namely, larger numbers of cores and the growing size of on-chip cache memory, are creating significant challenges for evaluating the design space of future processor architectures. Fast and scalable simulations are therefore needed to allow for sufficient exploration of large multi-core systems within a limited simulation time budget. By bringing together accurate high-abstraction analytical models with fast parallel simulation, architects can trade off accuracy with simulation speed to allow for longer application runs, covering a larger portion of the hardware design space. Interval simulation provides this balance between detailed cycle-accurate simulation and one-IPC simulation, allowing long-running simulations to be modeled much faster than with detailed cycle-accurate simulation, while still providing the detail necessary to observe core-uncore interactions across the entire system. Validations against real hardware show average absolute errors within 25% for a variety of multi-threaded workloads; more than twice as accurate on average as one-IPC simulation. Further, we demonstrate scalable simulation speed of up to 2.0 MIPS when simulating a 16-core system on an 8-core SMP machine.

Published in:

High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference for

Date of Conference:

12-18 Nov. 2011