Cart (Loading....) | Create Account
Close category search window
 

No More Backstabbing... A Faithful Scheduling Policy for Multithreaded Programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pusukuri, K.K. ; Dept. of Comput. Sci. & Eng., Univ. of California, Riverside, Riverside, CA, USA ; Gupta, R. ; Bhuyan, L.N.

Efficient contention management is the key to achieving scalable performance for multithreaded applications running on multicore systems. However, contention management policies provided by modern operating systems increase context-switches and lead to performance degradation for multithreaded applications under high loads. Moreover, this problem is exacerbated by the interaction between contention management policies and OS scheduling polices. Time Share (TS) is the default scheduling policy in a modern OS such as Open Solaris and with TS policy, priorities of threads change very frequently for balancing load and providing fairness in scheduling. Due to the frequent ping-ponging of priorities, threads of an application are often preempted by the threads of the same application. This increases the frequency of involuntary context-switches as wells as lock-holder thread preemptions and leads to poor performance. This problem becomes very serious under high loads. To alleviate this problem, in this paper, we present a scheduling policy called Faithful Scheduling (FF), which dramatically reduces context-switches as well as lock-holder thread preemptions. We implemented FF on a 24-core Dell Power Edge R905 server running OpenSolaris.2009.06 and evaluated it using 22 programs including the TATP database application, SPECjbb2005, programs from PARSEC, SPEC OMP, and some micro benchmarks. The experimental results show that FF policy achieves high performance for both lightly and heavily loaded systems. Moreover it does not require any changes to the application source code or the OS kernel.

Published in:

Parallel Architectures and Compilation Techniques (PACT), 2011 International Conference on

Date of Conference:

10-14 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.