By Topic

Link Prediction in Social Networks Using Computationally Efficient Topological Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fire, M. ; Deutsche Telekom Labs., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Tenenboim, L. ; Lesser, O. ; Puzis, R.
more authors

Online social networking sites have become increasingly popular over the last few years. As a result, new interdisciplinary research directions have emerged in which social network analysis methods are applied to networks containing hundreds millions of users. Unfortunately, links between individuals may be missing due to imperfect acquirement processes or because they are not yet reflected in the online network (i.e., friends in real world did not form a virtual connection.) Existing link prediction techniques lack the scalability required for full application on a continuously growing social network which may be adding everyday users with thousands of connections. The primary bottleneck in link prediction techniques is extracting structural features required for classifying links. In this paper we propose a set of simple, easy-to-compute structural features that can be analyzed to identify missing links. We show that a machine learning classifier trained using the proposed simple structural features can successfully identify missing links even when applied to a hard problem of classifying links between individuals who have at least one common friend. A new friends measure that we developed is shown to be a good predictor for missing links and an evaluation experiment was performed on five large social networks datasets: Face book, Flickr, You Tube, Academia and The Marker. Our methods can provide social network site operators with the capability of helping users to find known, offline contacts and to discover new friends online. They may also be used for exposing hidden links in an online social network.

Published in:

Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on

Date of Conference:

9-11 Oct. 2011