Cart (Loading....) | Create Account
Close category search window
 

Predicting Reciprocity in Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng, J. ; Comput. Sci., Cornell Univ., Ithaca, NY, USA ; Romero, D.M. ; Meeder, B. ; Kleinberg, J.

In social media settings where users send messages to one another, the issue of reciprocity naturally arises: does the communication between two users take place only in one direction, or is it reciprocated? In this paper we study the problem of reciprocity prediction: given the characteristics of two users, we wish to determine whether the communication between them is reciprocated or not. We approach this problem using decision trees and regression models to determine good indicators of reciprocity. We extract a network based on directed @-messages sent between users on Twitter, and identify measures based on the attributes of nodes and their network neighborhoods that can be used to construct good predictors of reciprocity. Moreover, we find that reciprocity prediction forms interesting contrasts with earlier network prediction tasks, including link prediction, as well as the inference of strengths and signs of network links.

Published in:

Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on

Date of Conference:

9-11 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.