By Topic

Rotationally Invariant Descriptors Using Intensity Order Pooling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fan, Bin ; Chinese Academy of Sciences, Beijing ; Fuchao Wu ; Zhanyi Hu

This paper proposes a novel method for interest region description which pools local features based on their intensity orders in multiple support regions. Pooling by intensity orders is not only invariant to rotation and monotonic intensity changes, but also encodes ordinal information into a descriptor. Two kinds of local features are used in this paper, one based on gradients and the other on intensities; hence, two descriptors are obtained: the Multisupport Region Order-Based Gradient Histogram (MROGH) and the Multisupport Region Rotation and Intensity Monotonic Invariant Descriptor (MRRID). Thanks to the intensity order pooling scheme, the two descriptors are rotation invariant without estimating a reference orientation, which appears to be a major error source for most of the existing methods, such as Scale Invariant Feature Transform (SIFT), SURF, and DAISY. Promising experimental results on image matching and object recognition demonstrate the effectiveness of the proposed descriptors compared to state-of-the-art descriptors.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 10 )