By Topic

Toward E-Motion-Based Music Retrieval a Study of Affective Gesture Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The widespread availability of digitized music collections and mobile music players have enabled us to listen to music during many of our daily activities, such as physical exercise, commuting, relaxation, and many people enjoy this. A practical problem that comes along with the wish to listen to music is that of music retrieval, the selection of desired music from a music collection. In this paper, we propose a new approach to facilitate music retrieval. Modern smart phones are commonly used as music players and are already equipped with inertial sensors that are suitable for obtaining motion information. In the proposed approach, emotion is derived automatically from arm gestures and is used to query a music collection. We derive predictive models for valence and arousal from empirical data, gathered in an experimental setup where inertial data recorded from arm movements are coupled to musical emotion. Part of the experiment is a preliminary study confirming that human subjects are generally capable of recognizing affect from arm gestures. Model validation in the main study confirmed the predictive capabilities of the models.

Published in:

IEEE Transactions on Affective Computing  (Volume:3 ,  Issue: 2 )