By Topic

A Novel Semiautomated Atherosclerotic Plaque Characterization Method Using Grayscale Intravascular Ultrasound Images: Comparison With Virtual Histology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Athanasiou, L.S. ; Dept. of Mater. Sci. & Eng., Univ. of Ioannina, Ioannina, Greece ; Karvelis, Petros S. ; Tsakanikas, V.D. ; Naka, K.K.
more authors

Intravascular ultrasound (IVUS) virtual histology (VH-IVUS) is a new technique, which provides automated plaque characterization in IVUS frames, using the ultrasound backscattered RF-signals. However, its computation can only be performed once per cardiac cycle (ECG-gated technique), which significantly decreases the number of characterized IVUS frames. Also atherosclerotic plaques in images that have been acquired by machines, which are not equipped with the VH software, cannot be characterized. To address these limitations, we have developed a plaque characterization technique that can be applied in grayscale IVUS images. Our semiautomated method is based on a three-step approach. In the first step, the plaque area [region of interest (ROI)] is detected semiautomatically. In the second step, a set of features is extracted for each pixel of the ROI and in the third step, a random forest classifier is used to classify these pixels into four classes: dense calcium, necrotic core, fibrotic tissue, and fibro-fatty tissue. In order to train and validate our method, we used 300 IVUS frames acquired from virtual histology examinations from ten patients. The overall accuracy of the proposed method was 85.65% suggesting that our approach is reliable and may be further investigated in the clinical and research arena.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 3 )