By Topic

Optimal nonlinear adaptive prediction and modeling of MPEG video in ATM networks using pipelined recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Po-Rong Chang ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Jen-Tsung Hu

This paper investigates the application of a pipelined recurrent neural network (PRNN) to the adaptive traffic prediction of MPEG video signal via dynamic ATM networks. The traffic signal of each picture type (I, P, and B) of MPEG video is characterized by a general nonlinear autoregressive moving average (NARMA) process. Moreover, a minimum mean-squared error predictor based on the NARMA model is developed to provide the best prediction for the video traffic signal. However, the explicit functional expression of the best mean-squared error predictor is actually unknown. To tackle this difficulty, a PRNN that consists of a number of simpler small-scale recurrent neural network (RNN) modules with less computational complexity is conducted to introduce the best nonlinear approximation capability into the minimum mean-squared error predictor model in order to accurately predict the future behavior of MPEG video traffic in a relatively short time period based on adaptive learning for each module from previous measurement data, in order to provide faster and more accurate control action to avoid the effects of excessive load situation. Since those modules of PRNN can be performed simultaneously in a pipelined parallelism fashion, this would lead to a significant improvement in the total computational efficiency of PRNN. In order to further improve the convergence performance of the adaptive algorithm for PRNN, a learning-rate annealing schedule is proposed to accelerate the adaptive learning process. Another advantage of the PRNN-based predictor is its generalization from learning that is useful for learning a dynamic environment for MPEG video traffic prediction in ATM networks where observations may be incomplete, delayed, or partially available. The PRNN-based predictor presented in this paper is shown to be promising and practically feasible in obtaining the best adaptive prediction of real-time MPEG video traffic

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:15 ,  Issue: 6 )