Cart (Loading....) | Create Account
Close category search window
 

M-Idempotent and Self-Dual Morphological Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bouaynaya, N. ; Dept. of Syst. Eng., Univ. of Arkansas at Little Rock, Little Rock, AR, USA ; Charif-Chefchaouni, M. ; Schonfeld, D.

In this paper, we present a comprehensive analysis of self-dual and m-idempotent operators. We refer to an operator as m-idempotent if it converges after m iterations. We focus on an important special case of the general theory of lattice morphology: spatially variant morphology, which captures the geometrical interpretation of spatially variant structuring elements. We demonstrate that every increasing self-dual morphological operator can be viewed as a morphological center. Necessary and sufficient conditions for the idempotence of morphological operators are characterized in terms of their kernel representation. We further extend our results to the representation of the kernel of m-idempotent morphological operators. We then rely on the conditions on the kernel representation derived and establish methods for the construction of m-idempotent and self-dual morphological operators. Finally, we illustrate the importance of the self-duality and m-idempotence properties by an application to speckle noise removal in radar images.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 4 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.