By Topic

Design and Evaluation of a Novel Haptic Interface for Endoscopic Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samur, E. ; Center for Bionic Med., Rehabilitation Inst. of Chicago, Chicago, IL, USA ; Flaction, L. ; Bleuler, H.

Inspection of the colon with an endoscope for early signs of cancer (colonoscopy) has become an extremely widespread procedure, since early treatment radically improves the outlook of patients. The procedure requires a close coordination between the sense of touch and vision to navigate the endoscope along the colon. This raises the need to develop efficient training methods for physicians. Training simulators based on virtual reality, where realistic graphics are combined with a mechatronic system providing haptic feedback, are alternative to traditional training methods. To provide physicians with realistic haptic sensations of an endoscopic procedure, we have designed a haptic interface, instrumented a clinical endoscope and combined them with a simulation software for colonoscopy. In this contribution, we present the mechatronic components of the simulator. The haptic interface is able to generate high forces using the combination of electrical motors and brakes in a compact design. Experiments were performed to determine the characteristics of the device. A model-based control has been implemented and the results show that the control successfully compensates for the device nonlinearities, such as friction. The proposed haptic interface, together with the virtual reality, form a highly realistic training simulator for endoscopic surgeons, applicable not only to colonoscopy, but also to similar interventions.

Published in:

Haptics, IEEE Transactions on  (Volume:5 ,  Issue: 4 )