By Topic

A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jafari, A. ; Dept. of Adv. Robot., Ist. Italiano di Tecnol., Genova, Italy ; Tsagarakis, N.G. ; Caldwell, D.G.

In this paper, a new actuator with adjustable stiffness (AwAS) is presented. AwAS is capable of controlling the position and stiffness of a joint, independently. The proposed actuator can regulate the joint stiffness through a wide range with minimum energy consumption by means of a small motor. This is possible due to its novel mechanical configuration that achieves the stiffness regulation not through the control of spring pretension (as in most of the existing variable stiffness joints) but by using the variable lever arm principle. The regulation of the lever arm length is achieved through the displacement of the spring elements. An important consequence of this mechanism is that the displacement needed to change the stiffness is perpendicular to the forces generated by the spring. This helps to reduce the energy/power required to regulate the stiffness. It is experimentally shown that AwAS is capable of minimizing energy consumption through exploiting the natural dynamics in real time for both fixed and variable frequency motions.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:18 ,  Issue: 1 )