By Topic

Adaptive Multiview Target Classification in Synthetic Aperture Sonar Images Using a Partially Observable Markov Decision Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vincent Myers ; Defence R&D Canada—Atlantic, Dartmouth, NS, Canada ; David P. Williams

The problem of classifying targets in sonar images from multiple views is modeled as a partially observable Markov decision process (POMDP). This model allows one to adaptively determine which additional views of an object would be most beneficial in reducing the classification uncertainty. Acquiring these additional views is made possible by employing an autonomous underwater vehicle (AUV) equipped with a side-looking imaging sonar. The components of the multiview target classification POMDP are specified. The observation model for a target is specified by the degree of similarity between the image under consideration and a number of precomputed templates. The POMDP is validated using real synthetic aperture sonar (SAS) data gathered during experiments at sea carried out by the NATO Undersea Research Centre, and results show that the accuracy of the proposed method outperforms an approach using a number of predetermined view aspects. The approach provides an elegant way to fully exploit multiview information and AUV maneuverability in a methodical manner.

Published in:

IEEE Journal of Oceanic Engineering  (Volume:37 ,  Issue: 1 )