By Topic

Robust Rate-Adaptive Wireless Communication Using ACK/NAK-Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koksal, C.E. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Schniter, P.

To combat the detrimental effects of the variability in wireless channels, we consider cross-layer rate adaptation based on limited feedback. In particular, based on limited feedback in the form of link-layer acknowledgements (ACK) and negative acknowledgements (NAK), we maximize the physical-layer transmission rate subject to an upper bound on the expected packet error rate. We take a robust approach in that we do not assume any particular prior distribution on the channel state. We first analyze the fundamental limitations of such systems and derive an upper bound on the achievable rate for signaling schemes based on uncoded QAM and random Gaussian ensembles. We show that, for channel estimation based on binary ACK/NAK feedback, it may be preferable to use a separate training sequence at high error rates, rather than to exploit low-error-rate data packets themselves. We also develop an adaptive recursive estimator, which is provably asymptotically optimal and asymptotically efficient.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 4 )