By Topic

Small-space controllability of a walking humanoid robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents a two-stage motion planner for walking humanoid robots. A first draft path is computed using random motion planning techniques that ensure collision avoidance. In a second step, the draft path is approximated by a whole-body dynamically stable walk trajectory. The contributions of this work are: (i) a formal guarantee, based on small space controllability criteria, that the first draft path can be approximated by a collision-free dynamically stable trajectory; (ii) an algorithm that uses this theoretical property to find a solution trajectory. We have applied our method on several problems where whole-body planning and walk are needed, and the results have been validated on a real platform: the robot HRP-2.

Published in:

Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on

Date of Conference:

26-28 Oct. 2011