By Topic

Reduced-Order Dynamic Modeling of Multiple-Winding Power Electronic Magnetic Components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Davoudi, A. ; Dept. of Electr. Eng., Univ. of Texas at Arlington, Arlington, TX, USA ; Chapman, P.L. ; Jatskevich, J. ; Behjati, H.

Dynamic high-fidelity magnetic equivalent circuits (HFMEC) are viable tool for accurate, physics-based modeling of magnetic components. However, such model formulation typically requires hundreds or thousands of state variables to accurately represent the eddy current dynamics. A reduced-order HFMEC modeling approach has been recently introduced for single-winding systems, e.g., inductors. This letter extends the HFMEC approach to multiple-winding power-electronic transformers. First, a general full-order HFMEC model of the multiple-winding system is developed that incorporates magnetic saturation and the eddy current dynamics. Then, multiple-input/multiple-output linear and nonlinear order-reduction techniques are used to extract the desired essential system dynamics while preserving the model accuracy and gaining computational efficiency. The proposed methodology is validated on a typical power electronic transformer with both pulse width modulation and sinusoidal excitations using numerical simulations and experimental measurements.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )