By Topic

Experimental dynamics of wing assisted running for a bipedal ornithopter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peterson, Kevin ; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 94720, USA ; Fearing, R.S.

BOLT is a lightweight bipedal ornithopter capable of high-speed dynamic running and effecting transitions between aerial and terrestrial locomotion modes. The gait dynamics of both quasi-static and dynamic locomotion are examined through the use of an on-board accelerometer, part of a one gram electronics package also containing a processor and radio. We discuss the accelerations in the context of the traditional spring-loaded inverted pendulum model seen in nearly all legged locomotion in organisms. Flapping wings are shown to provide damping along with propulsive force. The aerodynamic forces of the flapping wings also impart passive stability to the robot, enabling it to run bipedally with only a single actuator. BOLT transitions from ground running to aerial hovering in as little as one meter of runway. Overall, the advantages provided by wings in terrestrial locomotion, coupled with aerial capabilities, allow BOLT to navigate complex three dimensional environments, switching between locomotion modes when necessary.

Published in:

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on

Date of Conference:

25-30 Sept. 2011