By Topic

Learning to control planar hitting motions in a minigolf-like task

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kronander, K. ; Learning Algorithms & Syst. Lab. (LASA), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Khansari-Zadeh, M.S.M. ; Billard, A.

A current trend in robotics is to define robot tasks using a combination of superimposed motion patterns. For maximum versatility of such motion patterns, they should be easily and efficiently adaptable for situations beyond those for which the motion was originally designed. In this work, we show how a challenging minigolf-like task can be efficiently learned by the robot using a basic hitting motion model and a task-specific adaptation of the hitting parameters: hitting speed and hitting angle. We propose an approach to learn the hitting parameters for a minigolf field using a set of provided examples. This is a non-trivial problem since the successful choice of hitting parameters generally represent a highly non-linear, multi-valued map from the situation-representation to the hitting parameters. We show that by limiting the problem to learning one combination of hitting parameters for each input, a high-performance model of the hitting parameters can be learned using only a small set of training data. We compare two statistical methods, Gaussian Process Regression (GPR) and Gaussian Mixture Regression (GMR) in the context of inferring hitting parameters for the minigolf task. We validate our approach on the 7 degrees of freedom Barrett WAM robotic arm in both a simulated and real environment.

Published in:

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on

Date of Conference:

25-30 Sept. 2011